Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium.
نویسندگان
چکیده
BACKGROUND Human endometrium has immense regenerative capacity, growing ~5 mm in 7 days every month. We have previously identified a small population of colony-forming endometrial stromal cells which we hypothesize are mesenchymal stem cells (MSC). The aim of this study was to determine if the co-expression of two perivascular cell markers, CD146 and platelet-derived growth factor-receptor beta (PDGF-Rbeta), will prospectively isolate endometrial stromal cells which exhibit MSC properties, and determine their location in human endometrium. METHODS Single cell suspensions of human endometrial stromal cells were fluorescence activated cell sorting (FACS) sorted into CD146(+)PDGF-Rbeta(+) and CD146(-)PDGF-Rbeta(-) populations and analysed for colony-forming ability, in vitro differentiation and expression of typical MSC markers. Full thickness human endometrial sections were co-stained for CD146 and PDGF-Rbeta. RESULTS FACS stromal CD146(+)PDGF-Rbeta(+) stromal cells (1.5% of sorted population) were enriched for colony-forming cells compared with CD146(-)PDGF-Rbeta(-) cells (7.7 +/- 1.7 versus 0.7 +/- 0.2% P <0.0001), and also underwent differentiation into adipogenic, osteogenic, myogenic and chondrogenic lineages. They expressed MSC phenotypic surface markers and were located near blood vessels. CONCLUSION This study shows that human endometrium contains a small population of MSC-like cells that may be responsible for its cyclical growth, and may provide a readily available source of MSC for tissue engineering applications.
منابع مشابه
Human Wharton’s jelly-derived mesenchymal stem cells express oocyte developmental genes during co-culture with placental cells
Objective(s): The present day challenge is how to obtain germ cells from stem cells to treat patients with cancer and infertility. Much more efforts have been made to develop a procedure for attaining germ cells in vitro. Recently, human umbilical cord-derived mesenchymal stem cells (HUMSCs) have been introduced with higher efficacy for differentiation. In this work, we tried to explore the eff...
متن کاملMesenchymal Stem/Stromal-Like Cells from Diploid and Triploid Human Embryonic Stem Cells Display Different Gene Expression Profiles
Background: Human ESCs-MSCs open a new insight into future cell therapy applications, due to their unique characteristics, including immunomodulatory features, proliferation, and differentiation. Methods: Herein, hESCs-MSCs were characterized by IF technique with CD105 and FIBRONECTIN as markers and FIBRONECTIN, VIMENTIN, CD10, CD105, and CD14 genes using RT-PCR technique. FACS was performed fo...
متن کاملCharacteristics of Human Endometrial Stem Cells in Tissue and Isolated Cultured Cells: An Immunohistochemical Aspect
Background: The aim of this study was to investigate the percentage of the stem cells population in human endometrial tissue sections and cultured cells at fourth passage. Methods: Human endometrial specimens were divided into two parts, one part for morphological studies and the other part for in vitro culture. Full thickness of human normal endometrial sections and cultured endometrial cells ...
متن کاملMale germ-like cell differentiation potential of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells in co-culture with human placenta cells in presence of BMP4 and retinoic acid
Objective(s):Mesenchymal stem cells (MSCs) derived from Wharton’s jelly (WJ-MSCs) are now much more appealing for cell-based infertility therapy. Hence, WJ-MSCs differentiation toward germ layer cells for cell therapy purposes is currently under intensive study. Materials and Methods: MSCs were isolated from human Wharton’s jelly and treated with BMP4, retinoic acid (RA) or co-cultured on huma...
متن کامل3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression
New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human reproduction
دوره 22 11 شماره
صفحات -
تاریخ انتشار 2007